Е19-21.9 Демонстрационный вариант ЕГЭ 2016 по информатике – задание №26

Демонстрационный вариант ЕГЭ 2016 по информатике – задание №26

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежат две кучи кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в одну из куч (по сво­е­му вы­бо­ру) один ка­мень или уве­ли­чить ко­ли­че­ство кам­ней в куче в два раза. На­при­мер, пусть в одной куче 10 кам­ней, а в дру­гой 7 кам­ней; такую по­зи­цию в игре будем обо­зна­чать (10, 7). Тогда за один ход можно по­лу­чить любую из четырёх по­зи­ций: (11, 7), (20, 7), (10, 8), (10, 14). Для того чтобы де­лать ходы, у каж­до­го иг­ро­ка есть не­огра­ни­чен­ное ко­ли­че­ство кам­ней.

Игра за­вер­ша­ет­ся в тот мо­мент, когда сум­мар­ное ко­ли­че­ство кам­ней в кучах ста­но­вит­ся не менее 73. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, т.е. пер­вым по­лу­чив­ший такую по­зи­цию, что в кучах всего будет 73 камня или боль­ше.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка – зна­чит опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. На­при­мер, при на­чаль­ных по­зи­ци­ях (6, 34), (7, 33), (9, 32) вы­иг­рыш­ная стра­те­гия есть у Пети. Чтобы вы­иг­рать, ему до­ста­точ­но удво­ить ко­ли­че­ство кам­ней во вто­рой куче.

За­да­ние 1. Для каж­дой из на­чаль­ных по­зи­ций (6, 33), (8, 32) ука­жи­те, кто из иг­ро­ков имеет вы­иг­рыш­ную стра­те­гию. В каж­дом слу­чае опи­ши­те вы­иг­рыш­ную стра­те­гию; объ­яс­ни­те, по­че­му эта стра­те­гия ведёт к вы­иг­ры­шу, и ука­жи­те, какое наи­боль­шее ко­ли­че­ство ходов может по­тре­бо­вать­ся по­бе­ди­те­лю для вы­иг­ры­ша при этой стра­те­гии.

За­да­ние 2. Для каж­дой из на­чаль­ных по­зи­ций (6, 32), (7, 32), (8, 31) ука­жи­те, кто из иг­ро­ков имеет вы­иг­рыш­ную стра­те­гию. В каж­дом слу­чае опи­ши­те вы­иг­рыш­ную стра­те­гию; объ­яс­ни­те, по­че­му эта стра­те­гия ведёт к вы­иг­ры­шу, и ука­жи­те, какое наи­боль­шее ко­ли­че­ство ходов может по­тре­бо­вать­ся по­бе­ди­те­лю для вы­иг­ры­ша при этой стра­те­гии.

За­да­ние 3. Для на­чаль­ной по­зи­ции (7, 31) ука­жи­те, кто из иг­ро­ков имеет вы­иг­рыш­ную стра­те­гию. Опи­ши­те вы­иг­рыш­ную стра­те­гию; объ­яс­ни­те, по­че­му эта стра­те­гия ведёт к вы­иг­ры­шу, и ука­жи­те, какое наи­боль­шее ко­ли­че­ство ходов может по­тре­бо­вать­ся по­бе­ди­те­лю для вы­иг­ры­ша при этой стра­те­гии. По­строй­те де­ре­во всех пар­тий, воз­мож­ных при ука­зан­ной Вами вы­иг­рыш­ной стра­те­гии. Пред­ставь­те де­ре­во в виде ри­сун­ка или таб­ли­цы.